Lcture 3: The virial expansion.	
Recap	gumpic classical Hamiltonian inovite, and degrees of freedom.
H(F'',\vec{p}^N) = \sum_{i=1}^{n} \frac{\vec{p}_i}{2m} + \oint_{i=1} (F_n)	
The canonical partition function in the classical limit is	
Recomorical partition function in the classical limit is	
$Z(N_1V_1T) = \frac{1}{k^{2N}N!} \int_{i=1}^{k} d\vec{p}^N (f_n^2T' - \beta H(F'',\vec{p}^N))$ \n	
Homertium	W(X,T)
Computation	W(X,T)
Computation	W(X,T)
Complement	W(X,T)
Confin	Comfin automat integral
Conformal	Comfin
Conformal	Confin
Conformal	

$$
\frac{D_{\text{max}}}{N!A^{M}} + \frac{V^{N-2}}{N!A^{3N}} \frac{N(N-1)}{Q} \int d\vec{r}, \int
$$

For example, N=4.
\n
$$
\int \frac{1}{111} \pi x \frac{1}{111} \int \frac{1}{111} \
$$

For example,
\n
$$
u_3 = \int d\vec{r}_1 \int d\vec{r}_2 \int d\vec{r}_3 \left(\frac{v^3}{1 + \frac{v^2}{2}} + \frac{v^3}{1 + \frac{v^4}{2}} \right)
$$

\nSo we find:
\n $2(M, V, T) = \frac{1}{\sqrt{m}} \sum_{i=1}^{m} \frac{1}{i!} \frac{u_i m e}{(l!)^m e_{m}} \qquad \text{Equation not in } f_1 \text{ but in } g_2 \text{ (in } V, T) = \frac{1}{\sqrt{m}} \sum_{i=1}^{m} \frac{1}{i!} \frac{u_i m e}{(l!)^m e_{m}} \qquad \text{Equation to the value of at least l .)
\n $2(m, T) = \sum_{N=0}^{m} \frac{2N}{N!} \frac{Q_{N-1}V(T)}{N!} \qquad \text{Equation to the value of at least l .)
\n $2(m, T) = \sum_{N=0}^{m} \frac{2N}{N!} \frac{Q_{N-1}V(T)}{N!} \qquad \text{Equation to the value of at least l .)
\n $l = \frac{Q_1}{\sqrt{m}} \qquad \text{Equation to the value of at least l .)
\n $l = \frac{Q_1}{\sqrt{m}} \qquad \text{Equation to the value of at least l .)
\n $l = \frac{Q_2 - Q_1^2}{\sqrt{m}} \qquad \text{Equation to the value of at least l .)
\n $2L(\mu, V, T) = -p(\mu, T)V \Rightarrow p_1 (2 + T) = \frac{Q_1}{\sqrt{m}} \qquad \text{Equation to the value of at least l .)
\n $2L(\mu, V, T) = -p(\mu, T)V \Rightarrow p_1 (2 + T) = \frac{Q_1}{\sqrt{m}} \qquad \text{Equation to the value of at least l .)
\n $2L(\mu, V, T) = -p(\mu, T)V \Rightarrow p_1 (2 + T) = \sum_{N=1}^{m} (n \mu, 2^N)$
\n $2L(\mu, V, T) = -p(\mu, T)V \Rightarrow p_1 (2 + T) = \sum_{N=1}^{m$$$$$$$$$

⑭

Compute pressure:
$$
\beta p(q,T) = p + B_2(T)q^2 + B_3(T)q^3 +
$$
 (a)
\nwhere $B_2(T) = -\frac{1}{2V} \int d\vec{r}_1 \int d\vec{r}_2 \int_{\text{int}} r(r_1) = -\frac{1}{2V} \int d\vec{r}_1 (r_2) = -\frac{1}{2V} \int d\vec{r}_1 (r_1)$
\n $\beta_2(T) = \frac{1}{3V} \int d\vec{r}_1 \int d\vec{r}_2 \int d\vec{r}_3 \int m(r_1) \int n(r_3) \int n(r_2) \cdot$
\nRemark: $B_2(T_B) = 0$ (b) T_B $BogL$ temperature.
\n2.3 spinifies transition between repulsion/aftraction dominated.
\nFurthermore, we can write:
\n $\oint_{ex}(q,T) = \frac{F - F_{id}}{Vk_B T} = \sum_{n=2}^{\infty} (C_n(T)q^n)$ $\left(\frac{C_n}{\pi}\right)$
\n $\beta p = -\left(\frac{\partial F}{\partial V}\right)_{N_T T} = -\beta_0 \int f \left(\frac{\partial f}{\partial g}\right)_{T} + \int f \left(\frac{\partial f}{\partial g}\right)_{T}$
\n10. conclude that
\n $\oint_{t} = \frac{\beta F}{\pi} = e \left[\log (q/\lambda^3) - \eta \right] + B_2(T) \rho^2 + \frac{B_2(T)}{2} \rho^3 + ...$

 $\sqrt{5}$

Furthermore, we can write:
\n
$$
f_{ex}(g,T) = \frac{F-F_{id}}{\sqrt{k_{B}T}} = \sum_{n=2}^{\infty} C_{n}(T)g^{n}
$$

\n $\beta p = -(\frac{\partial F}{\partial V})_{N_{1}T} = -\beta \int f g(\frac{\partial f}{\partial g})_{T}^{\infty}$
\n $\beta p = -(\frac{\partial F}{\partial V})_{N_{1}T}^{\infty} = -\beta \int f g(\frac{\partial f}{\partial g})_{T}^{\infty}$

1)
$$
l = \frac{BF}{V} = \rho [log (g\Lambda^{3}) - J + B_{2}(T)g^{2} + \frac{B_{3}(T)}{R}g^{3} + ...
$$

\n $\frac{1}{V} = \frac{BF}{V} = \rho [log (g\Lambda^{3}) - J + B_{2}(T)g^{2} + \frac{B_{3}(T)}{R}g^{3} + ...$
\n $Recall that: \frac{1}{L1} (g_{1}\Lambda_{1}T) = \sum_{N=0}^{\infty} \epsilon_{1}^{N}M_{2}(N_{1}\Lambda_{1}T)$
\n $= \sum_{N=0}^{\infty} \epsilon_{1}^{N}M_{1} \frac{1}{\Lambda^{3N}} \sum_{m_{l}=0}^{\infty} \frac{1}{L1} \frac{u_{e}m_{e}}{m_{l}} \delta_{N_{1}m_{l}}L$
\n $= \sum_{m_{l}=0}^{\infty} \frac{1}{L1} \left(\frac{e_{1}^{8}\mu}{\Lambda^{2}}\right)^{m_{l}} \frac{u_{e}m_{e}}{(L!)^{n}Gm_{e}} = \frac{1}{L1} exp \left(\frac{u_{e}z^{e}}{l!}\right)$
\nHence: $\beta \Delta z - log \frac{1}{L} = \sum_{n=0}^{\infty} \frac{u_{e}z^{h}}{l!} \left(\frac{z^{2}}{l!}\right)$
\n $Gamma \approx \frac{e^{2}}{l!} \frac{u_{e}z^{h}}{l!} \left(\frac{1}{l!}\right)$

⑥ However, one finds that B_{2} (T) = one finds that
 $-\frac{1}{2\sqrt{}}\int d\vec{r}$, $\int d\vec{r}^2$ $B_{3}^{\circ}(\tau)$ = $-\frac{1}{37}\int d\vec{r}_1\int d\vec{r}_2$ $\mathbb{B}_q\left(\tau \right)$ = Note that $-\frac{1}{84}\int d\vec{r}_1\int d\vec{r}_2\int d\vec{r}_3\int d\vec{r}_4$ diagrams like le drop out. (3 1 + 6 1 + 2)
suit.
comected graph atten Only inneducible clusters: Still a commected graph when you cat one line. Mole short
Chly inne
Fromples Examples of virial expansion-Very important model system is hard spheres. w_{e} find: $B_{z} = \frac{2}{3}\pi\sigma^{3}$ $B_{z} = \frac{2}{3}\pi\sigma^{3}$
 $B_{z} = \frac{5\pi^{2}}{10}\sigma^{6}$
 $B_{3} = \frac{5\pi^{2}}{10}\sigma^{6}$ $B_4 =$ expansion.

model system is food spheres.
 $\frac{2}{3}\pi\sigma^3$
 $\frac{5\pi^2}{10}\sigma^6$
 $\left[-\frac{89}{240} + \frac{219\sqrt{2}}{22401} + \frac{413}{22401} \arccos(\frac{1}{\sqrt{2}})\right]g^3$
 $\div f(T)$ Note that $B_{n} \neq f(T)$ We can write: $\eta = \frac{\pi}{6} \frac{33}{5} \frac{1}{14} \frac{1}{15}$ $\frac{\beta p}{\beta}$ = 1 + 4 m + 1 on +10.365n + 20.225 n +535n + 70.0 nt. $y = \frac{\pi}{6} \sigma^3 \rho$.
 $y = \frac{\pi}{6} \sigma^3 \rho$.
 $y + \frac{3}{3} \rho$.
 $\approx \sum_{n=1}^{\infty} (n^2 + 3n) \eta^n$ Series can be summed.

$$
Goul = Franework to describe these functions (units).\nTotal: Dinsity-density correlation functions (interportations)\n2-7 measurements from the (local) structure of the fluid.\n\nReurtes to the modynamics from the (local) structure of the final.\n
$$
Q(i):= \oint_{i=1}^{N} G(i) = \sum_{i=1}^{N} G(i-i)
$$
\n
$$
Q(i):= \oint_{i=1}^{N} G(i) = \int_{i=1}^{N} G(i-i)
$$
\n
$$
Q(i):= \oint_{i=1}^{N} G(i) = \int_{i=1}^{N} G(i-i)
$$
\n
$$
Take \Phi(n_1, n_1, n_2, n_3) = \int_{i=1}^{N} G(i-i)
$$
\n
$$
Take \Phi(n_1, n_2, n_3) = \int_{i=1}^{N} G(i-i)
$$
\n
$$
Take \Phi(n_1, n_2, n_3) = \int_{i=1}^{N} G(i-i)
$$
\n
$$
Take \Phi(n_1, n_2, n_3) = \int_{i=1}^{N} G(i-i)
$$
\n
$$
Tate \Phi(n_1, n_2, n_3) = \int_{i=1}^{N} G(i-i)
$$
\n
$$
Tate \Phi(n_1, n_2, n_3) = \int_{i=1}^{N} G(i)
$$
\n
$$
Tate \Phi(n_1, n_2, n_3) = \int_{i=1}^{N} G(i)
$$
\n
$$
Tate \Phi(n_1, n_2, n_3) = \int_{i=1}^{N} G(i)
$$
\n
$$
Tate \Phi(n_1, n_2, n_3) = \int_{i=1}^{N} G(i)
$$
\n
$$
Tate \Phi(n_1, n_2, n_3) = \int_{i=1}^{N} G(i)
$$
\n
$$
Tate \Phi(n_1, n_2, n_3) = \int_{i=1}^{N} G(i)
$$
\n
$$
Tate \Phi(n_1, n_2, n_3) = \int_{i=1}^{N} G(i)
$$
\n
$$
Tate \Phi(n_1, n_2, n_3) = \int_{i=1}^{N} G(i)
$$
\n
$$
Tate \Phi(n_1, n_2, n_4) = \int_{i=1}^{N} G(i)
$$
\n $$
$$

Two-body density operator:
\n
$$
\hat{p}^{(2)}(\vec{r}_{1}\vec{r}_{1}) = \sum_{i=1}^{n} \sum_{j=1}^{n} \delta(\vec{r}_{1}\vec{r}_{i}) \delta(\vec{r}_{1}\vec{r}_{j})
$$

\nwhich defines the two-body correlation function $p^{(2)}(\vec{r}_{1}\vec{r}_{1}) = \langle \hat{p}^{(2)}(\vec{r}_{i}) \rangle$
\nNote normalisation: $\int d\vec{r} \int d\vec{r} \cdot \phi^{(1)}(\vec{r}_{1}\vec{r}_{1}) = N(N-1)$.
\nInterpretation of $p^{(1)}(\vec{r}_{1}\vec{r}_{1})$. The probability $d\vec{r}_{1}$ a particle
\n \vec{r} , and one at \vec{r} , *inrespective of the other particles positions*
\n $(\vec{r}_{1}\vec{r}_{1}) = \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\vec{r}_{i}\vec{r}_{1} - \vec{r}_{i}\right) \Rightarrow \rho(\vec{r}_{1}) \sigma(\vec{r}_{1})$
\nFor suitable intheorem, potentials: $\int e^{(1)}(\vec{r}_{1}\vec{r}_{1}) \Rightarrow \rho(\vec{r}_{1}) \sigma(\vec{r}_{1})$
\n $(\vec{r}_{1}\vec{r}_{1}) = \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\vec{r}_{1}\vec{r}_{1} - \vec{r}_{1} - \vec{r}_{1$

Conditional probability: For example, conditional probability density of stochastic variable
$$
y
$$
 given that $x \geq x$.

\nPythagorean in the interval y and $y \geq 0$ for y and y are the set of y